Ch-1 Relations and Functions

Types of relations: reflexive, symmetric, transitive and equivalence relations. One to one and onto functions.

Relation

A Relation R from a non-empty set A to a non-empty set B is a subset of the Cartesian product set $A \times B$. i.e. $R \subset A \times B$. A relation in a set A is the subset of Cartesian product AXA. If a and b are elements of set A and a is related to b then we write as $(a,b) \in R$ or aRb. The set of all first elements in the ordered pair (a,b) in a relation R, is called the domain of the relation R and the set of all second elements called images, is called the range of R.

Types of relations

Empty relation: A relation R in a set A is called *empty relation*, if no element of A is related to any element of A. i.e., $R = \phi \subset A \times A$.

<u>Universal relation</u>: A relation R in a set A is called *universal relation*, if each element of A is related to every element of A, i.e. $R = A \times A$.

Equivalence relation. A relation R in a set A is said to be an *equivalence relation* if R is reflexive, symmetric and transitive

A relation R in a set A is called

(i) *Reflexive*, if $(a, a) \in \mathbb{R}$, for every $a \in \mathbb{A}$,

(ii) *Symmetric*, if $(a, b) \in \mathbb{R}$ implies that $(a, b) \in \mathbb{R}$, for all $a, b \in \mathbb{A}$.

(iii) *Transitive*, if $(a, b) \in \mathbb{R}$ and $(b, c) \in \mathbb{R}$ implies that $(a, c) \in \mathbb{R}$ $a, b, c \in \mathbb{A}$.

Function

A relation f from a set A to a set B is said to be function if every element of set A has one and only one image in set B. The notation $f: X \rightarrow Y$ means that f is a function from X to Y. X is called the domain of f and Y is called the co-domain of f.

Given an element $x \in X$, there is a unique element y in Y that is related to x. The unique element y to which f relates x is denoted by f(x) and is called f of x, or the value of f at x, or the image of x under f. The set of all values of f(x) taken together is called the range of f or image of X under f.

Symbolically, Range of $f = \{y \in Y \mid y = f(x), \text{ for some } x \text{ in } X\}.$

Types of functions: One-one (or *injective*):

A function $f: X \to Y$ is defined to be *one-one* (or *injective*), if the images of distinct elements of X under *f* are distinct, i.e., for every *a*, *b* in X, f(a) = f(b) implies a = b. Otherwise, *f* is called *many one*

To disprove the result, we need to use its contrapositive statement: $a \neq b \Rightarrow f(a) \neq f(b)$.

Onto (or surjective):

A function $f: X \to Y$ is said to be *onto* (or *surjective*), if every element of Y is the image of some element of X under f, i.e., for every y in Y, there exists an element x in X such that f(x) = y. OR Co - domf = Rangef

Bijective function:

A function $f: X \rightarrow Y$ is said to be *bijective* if f is both one-one and onto.

Important points on Relation & Functions:

- 1. The total number of relations from a set A having 'm' elements to a set B having 'n' elements is 2^{mn} .
- 2. The total number of relations in a set A having 'n' elements is 2^{n^2} .
- 3. The number of reflexive relations in a set having n elements is 2^{n^2-n} .
- 4. The number of symmetric relations in a set having n elements is $2^{\frac{n^2+n}{2}}$.
- 5. The total number of equivalence relations in a set A having 'n' elements: By Bell numbers

~						
n	1					
1	1	2				
2	2	3	5			
3	5	7	10	15		

4	15	20	27	37	52	
	and s	o on				

- 6. The number of injective/one to one function(s) from a set A having 'm' to another set B having 'n' elements with $n \ge m$ is $\frac{m!}{(m-n)!}$.
- 7. The number of injective/one to one function(s) from a set A having 'm' to another set B having 'n' elements is n^m .
- 8. The number of onto functions from a set A having 'm' elements to a set B having 'n' elements $m \ge n$ is $2^m 2$
- 9. The number of bijective functions in a set A having 'n' elements is n!

MULTIPLE COICE QUESTIONS (1 MARK EACH)

1.	If $A = \{5,6,7\}$ and let $R = \{5,5\}, (6,6)\}, (7,7), (5,6), (6,5), (6,7), (7,6)\}$. Then R is						
	A) Reflexive, symmetric but not Transitive	B) Symmetric, transitive but not reflexive					
	C) Reflexive, Transitive but not symmetric	D) an equivalence relation					
2.	Let R be a relation defined on Z as follows: $(a, b) \in R$ If $a^2 + b^2 = 25$. Then Domain of R A) $\{3,4,5\}$	R is B) {0,3,4,5}					
	C) $\{0, \pm 3, \pm 4, \pm 5\}$	D) None of these					
3.	The maximum number of equivalence relations or A) 1	a the set $A = \{1, 2, 3\}$ is B) 2					
	C) 3	D)5					
4.	The number of elements in set A is 3. The number A is	r of possible relations that can be defined on					
	A)8	B)4					
	C)64	D)512					
5.	The number of elements in Set A is 3. The number of possible reflexive relations that can be defined in A is						
	A) 64	B) 8					
	C)512	D) 4					