Q1 .	Boiling point or freezing point of liquid solution would be affected by the dissolved solids in the liquid phase. A soluble solid in solution has the effect of raising its bailing point and depression its freezing point. The addition of new solution								
	boiling point and depressing its freezing point. The addition of non-volatile								
	substances to a solvent decreases the vapor pressure and the added solute particles affect the formation of pure solvent crystals. According to many researches the								
	decrease in freezing point directly correlated to the concentration of solutes								
	dissolved in the solvent. This phenomenon is expressed as freezing point depression and it is useful for several applications such as freeze concentration of liquid food								
	and to find the molar mass of an unknown solute in the solution. Freeze								
	concentration is a high-quality liquid food concentration method where water is								
	removed by forming ice crystals. This is done by cooling the liquid food below the								
	freezing point of the solution. The freezing point depression is referred as a colligative property and it is proportional to the <u>molar</u> concentration of the solution (m), along with vapor pressure relative lowering, boiling point elevation, and osmotic pressure. These are physical characteristics of solutions that depend only on the								
	identity of the solvent and the concentration of the solute. The characters are not								
	depending on the solute's identity.								
				& Wansapala, M. A					
	Freezing point	depression	of different	Sucrose solut	ions and				
	coconut <u>water</u> .)	on hotwoon wonor	in processing of col	id and liquid states	ot froozing				
a	point?	on between vapor	ui pressure or sor	iu anu nquiu states	s at meezing				
b		nt of 0.1m solutio	n of acetic acid in	n benzene is less th	nan freezing				
	Why freezing point of 0.1m solution of acetic acid in benzene is less than freezing point of 0.01m solution?								
С	Out of the following 0.10 m aqueous solutions, which one will exhibit the largest								
	freezing point depression? KCl , $C_6H_{12}O_6$, $Al_2(SO_4)_3$, K_2SO_4								
	OR	06.01	1 1 1 1 01 '						
С	If K_f for water is 1.86 °C/m, explain why 1m NaCl in water does not have a freezing point equal to a) -1.86 °C b) -3.72°C								
ANS		iai io aj -1.00 %	<i>bj</i> -3.72°C						
a .	Equal								
<u>-</u> b		in 0.1m solution	is more than 0.01	solution so FP of t	first is less.				
C	Depression in FP in 0.1m solution is more than 0.01 solution so FP of first is less. $C_6H_{12}O_6$								
	OR								
С	a) as there are 2 moles of ions per mol of NaCl								
	b) degree of ionisation is not 100% at freezing point due to stronger interactions for								
	1m solution.	4:		ent a alteratione of	1 1				
Q2		1		nt salt solutions. S	ne makes a				
	S.No	Mass of the salt used in g	Melting point in °C	Fairs and in our					
			Readings Set 1	Reading Set 2					
	1	0.3	-1.9	-1.9					
	2	0.4	-2.5 -3.0	-2.6 -5.5					
	5	0.6	-3.8	-3.8					
	1		-0.0	-0.0	4				
	4			-5.0					
	4 5 6	0.8	-5.1 -6.4	-5.0 -6.3					
	5 6	0.8 1.0	-5.1 -6.4		he nuts				

Ϊ

	out of the freezer and measures the temperature when the frozen salt solution melts. She repeats each experiment. Assuming the melting point of pure water as 0°C, answer the following questions: (a) One temperature in the second set of results does not fit in the pattern. Which temperature is that? Justify your answer. (b) Why did Henna collect two sets of results? (c) In place of NaCl, if Henna had used glucose, what would have been the melting point of the solution with 0.6 g glucose in it? 2 0R (c) What is the predicted melting point if 1.2 g of salt is added to 10 mL of water? Justify your answer.
Ans- Q2	a) 3rd reading for 0.5 g there has to be an increase in depression of freezing point and therefore decrease in freezing point so also decrease in melting point when amount of salt is increased but the trend is not followed in this case.b) Two sets of reading help to avoid error in data collection and give more objective data.
	c.) ΔT_f (glucose) = 1 x K _f x 0.6 x 1000 / 180x 10(1)
	ΔT_{f} (NaCl) = 2 x K _f x 0.6 x 1000 / 58.5x10
	$3.8 = 2 \times K_f \times 0.6 \times 1000 / 58.5 \times 10$ (2)
	Divide equation 1 by 2
	$\Delta T_{\rm f} ({\rm glucose}) / 3.8 = 58.5 / 2 \ge 180$
	$\Delta T_{\rm f}$ (glucose) = 0.62
	Freezing point or Melting point = - 0.62 °C
	OR
	depression in freezing point is directly proportional to molality (mass of solute when
	the amount of solvent remains same)
	0.3 g depression is 1.9 °C
	0.6 g depression is 3.8 °C
	1.2 g depression will be 3.8 x2 = 7.6 °C
Q3	Aarav Sharma is very fond of a special drink made by his grandmother using different fruits available in their hometown. It has an outstanding taste and also provides great health benefits of natural fruits. He thought of utilizing his grandmother recipe to create a new product in the beverage market that provide health benefits and also contain fizziness of various soft drinks available in the market. Based on your understanding of solutions chapter, help Aarav Sharma to accomplish his idea by answering following:
	(a) How he can add fizz to the special drink made by his grandmother? 1
	(b) What is the law stated in the chapter that can help Aarav to make his drink fizzy?
1	(c) What precautions he should take while bottling so that his product does not

	(c)The mole fraction of helium in a saturated solution at 20° C is $1.2 \ge 10^{-6}$. Find the pressure of helium above the solution. Given Henry's constant at 20° C is 144.97 kbar.						
Ans- Q3	a) Carbon dioxide is a gas which provides fizz and tangy flavour. He can dissolve Carbon dioxide gas in the drink.						olve
	b) Henry's law which states that solubility of a gas in liquid is directly proportional to partial pressure of the gas.						
	(c) Bottles should be sealed under high pressure of CO and capping should be done perfectly to avoid leakage of CO_2 as any loss of partial pressure will result into decrease in solubility.						
	OR (c) $p_{He} = K_H \ge X_{He}$						
	$= (144.97 \times 10^{3} \text{bar})(1.2 \times 10^{-6})$ = 0.174 bar						
Q4	Observe the table in which azeotropic mixtures are given along with their boiling points of pure Components and azeotropes and answer the questions that follow.						
	121		Some Azeotropic N	lixtures			
	A	В	Minimum Boiling Azeotropes		1	ng Points	
	Н ₂ О Н ₂ О СН ₃ СОСН,	С ₂ н ₃ он С ₃ н ₇ он СS,	95.37% 71.69% 67%	A 373K 373K 329.25K	B 351.3K 370.19K 319.25K	Mixture Azeotropes 351.15 350.72 312.30	
	A	В	Maximum Boiling Azeotropes	А	В	Mixture Azcotropes	
	H ₂ O H ₂ O	HNO,	20.3%	373K 373K	188K 359K	383K 393.5K	
	H ₂ O	нсю,	71.6%	373K	383K	476K	
		I2O and H	on is shown by minim OR ICl mixture form max s?			-	1
	(c) Give one ex	ample of	ideal solution. What t	type of I	liquids f	orm ideal solutions?	2
Ans- Q4	(a) Positive deviation from Raoult's law.						
	OR (a) It is because force of attraction between H_2O and HCl is more than H_2O-H_2O and $HCl-HCl$.						
	(b) Azeotropes- Binary mixtures having same composition in liquid and vapour phase and boil at a constant temperature.						
	· · /	-	e form ideal solution attraction form ideal		-	ounds of same fan	nily
Q5	Boiling point or freezing point of liquid solution would be affected by the dissolved solids in the liquid phase. A soluble solid in solution has the effect of raising its boiling point and depressing its freezing point. The addition of non-volatile substances to a solvent decreases the vapor pressure and the added solute particles affect the formation of pure solvent crystals According to many researches the decrease in freezing point directly correlated to the concentration of solutes dissolved in the solvent. This phenomenon is expressed as freezing point depression					its tile cles the tes	

	 and it is useful for several applications such as freeze concentration of liquid food and to find the molar mass of an unknown solute in the solution. Freeze concentration is a high-quality liquid food concentration method where water is removed by forming ice crystals, this is done by cooling the liquid food below the freezing point of the solution. The freezing point depression is referred a a colligative property and it is proportional to the molar concentration of the solution (m), along with vapour pressure lowering boiling point elevation, and osmotic pressure. These are physical characteristics of solutions that depend only on the identity of the solvent and the concentration of the solute. The character are not depending on the solute's identity. (Source: Jayawardena, J. A. E. C., Vanniarachchi, M. P. G., & Wansapala, M. A. J. (2017). Freezing point depression of different Sucrose solutions and coconut water) a. Four samples BaCl₂, NaCl, ZnCl₂ and AICl₃ of 0.5 M are being boiled Which of the among will show highest elevation in boiling point? b. How does sprinkling of salt help in clearing the snow-covered roads in hilly areas? c. The freezing point of nitrobenzene is 278.8 K. When 2.8 g of an unknown substance is dissolved in 100 g of nitrobenzene, the freezing point of solution is found 276.8 K. If the freezing point depression of nitrobenzene is 8.0 K kg mol-what is the molar mass of unknown substance? [K₁=8 KKgmol⁻¹ for nitrobenzene] 			
	OR C.A solution prepared by dissolving 2g of oil of wintergreen (methyl salicylate) in 100.0 g of benzene has a boiling point of 80. 31° C. Determine the molar mass of this compound. (B.P. of benzene - 80.10°C and K _b for benzene 2.52° C kg mol ₋)			
Ans	a. AlCl ₃			
Q5	 b. By depression of freezing point (it lowers freezing point of water less than 0 C) 			
	c. $\Delta T_f = i k_f m$ 2=1x 8 x (2.8/M _b)x1000/100 =8x2.8x10/M _b			
	$M_b = 8x28/2 = 8x14 = 112g/mol$			
	OR			
	$\Delta T_{\rm b} = i \ k_{\rm b} \ m$			
	$0.21 = 1 \times 2.52 \times 2 \times 1000 / 100 \times M_b$			
	M_b = 2.52x2x10/0.21=240 g/mol			
	<u> </u>			