RELATIONS AND FUNCTIONS

MULTIPLE CHOICE QUESTIONS

Q.No	QUESTIONS AND SOLUTIONS
1	If $A = \{5, 6, 7\}$ and
	let $R = \{5,5\}, (6,6)\}, (7,7), (5,6), (6,5), (6,7), (7,6)\}$. Then R is
	a) Reflexive, symmetric but not Transitive
	b) Symmetric, transitive but not reflexive
	c) Reflexive, Transitive but not symmetric
	d) an equivalence relation
	Answer: A
	$(5,6) \in \mathbb{R}$ and $(6,7) \in \mathbb{R}$ but $(5,7)$ does not belong to \mathbb{R}
2	Let R be a relation defined on Z as follows:
	$(a,b) \in R \Leftrightarrow a^2 + b^2 = 25$. Then Domain of R is
	a) $\{3,4,5\}$ b) $\{0,3,4,5\}$
	C) $\{0,\pm 3,\pm 4,\pm 5\}$ d) None of these
	Answer: C $P = \{(0, \pm 5), (\pm 5, 0), (\pm 3, \pm 4), (\pm 4, \pm 3)\}$
	Domain of R is the set of all first elements of R
3	The maximum number of equivalence relations on the set $A = \{1, 2, 3\}$ is
5	a) 1 b) 2 c) 3 d)5
	Answer: D
	Possible equivalence relations are
	$R_1 = \{ (1,1), (2,2), (3,3) \}$
	$R_2 = \{ (1,1), (2,2), (3,3), (1,2), (2,1) \}$
	$R_3 = \{ (1,1), (2,2), (3,3), (1,3), (3,1) \}$
	$R_4 = \{ (1,1), (2,2), (3,3), (2,3), (3,2) \}$
	$R_5 = A \times A$
4	Consider the set $A = \{1, 2\}$. The relation on A which is symmetric but neither
	transitive nor reflexive is
	a) $\{(1,1)(2,2)\}$ b) $\{\}$
	(1,2) $(1,2)$ $(1,2)$ $(2,1)$
	Answer: D

	R is not reflexive since $(1,1)$ and $(2,2)$ are not there in R
	R is not transitive since $(1,2)$ and $(2,1)$ belong to R but $(1,1)$ does not belong to
	R.
5	If $A = \{d, e, f\}$ and
	let $R = \{(d, d), (d, e), (e, d), (e, e)\}$. Then R is
	a) Reflexive, symmetric but not Transitive
	 D) Symmetric, transitive but not reflexive a) Deflexive Transitive but not symmetric
	d) an equivalence relation
	Answer: B
	R is not reflexive because (f, f) is not present in R
6	Let R be a reflexive relation on a finite set A having n elements and let there be
	m, minimum number of ordered pairs in R, then
	a) $m < n$ b) $m > n$
	c) $m = n$ d)none of these
	Answer: C
	A relation on a set A is relievely element of A is related to itself $a = a = b$
7	I.e. $(u, u) \in K$, for all $u \in K$ The number of elements in set A is 3. The number of possible relations that can be
/	Δ defined on Δ is
	a) 8 b) 4 c) 64 d) 512
	Answer: D
	The number of possible relations on a set having n elements is 2^{n^2} as every
	relation is a subset of $A \times A$.
8	The number of elements in Set A is 3. The number of possible reflexive relations
	that can be defined in A is
	a) 64 b) 8 c) 512 d) 4
	Answor: A
	Answer. A If a set has Λ has n elements then the number of possible reflexive relations on Λ
	is $2n(n-1)$
9	The number of elements in set P is 4 The number of possible symmetric relations
-	that can be defined on P is
	a) 16 b) 32 c) 512 d) 1024
	Answer: D
	If a set has A has n elements then the number of possible symmetric relations on $r(a,b)$
	A is $2^{\frac{n(n+1)}{2}}$
10	Let R be a relation on the set N of natural numbers defined by <i>aRb</i> if and only if
	<i>a divides b</i> .Then R is
	a) Reflexive, symmetric but not Transitive
	b) Symmetric, transitive but not reflexive
	d) an equivalence relation
	Answer C
	R is reflexive, since every natural number divides itself.
	If a divides b and b divides c then a divides c
	So R is transitive
	a divides b need not imply that b divides a.
	So R is not symmetric.

1.	Let $f: R \to R$ be defined by $f(x) = \frac{1}{x} \forall x \in R$. Then f is
	a) One-one
	b) Onto
	c) Bijective
	d) f is not defined
	Answer: d
2.	Set A has 4 elements and set B has 5 elements. Then the number of bijective
	mappings from A to B is
	a) 120
	b) 20
	() 0
	d) 623
	Answer: c
3	Set A has 3 elements and set B has 4 elements. Then the number of injective
5.	mannings from A to B is
	a) 144
	b) 12
	c) 24
	d) 64
	Answer: c
4.	The function $f: [\pi, 2\pi] \to R$ defined by $f(x) = cosx$ is
	a) one – one but not onto
	b) onto but not one – one
	c) many – one function
	d) bijective function
	Answer: d
5.	Let
	$f: R \to R$ be defined by $f(x) = x^3 + 4$, then f is
	a) Injective
	b) Surjective
	c) Bijective
	d) None of these
	Answer: c

6.	Let $A = \{1,2,3\}, B = \{4,5,6,7\}$ and let $f = \{(1,4), (2,5), (3,6)\}$ be a function from
	A to B. Based on the given information <i>f</i> is best defined as
	a) Surjective function
	b) Injective function
	c) Bijective function
	d) Function
	Answer: b
7.	Let $A = \{1, 2, 3,, n\}$ and $B = \{p, q\}$. Then the number of onto functions from A to
	B is
	a) 2^n
	b) $2^{n}-2$
	c) $2^{n}-1$
	d) None of these
	Answer: b

ASSERTION AND REASONING QUESTIONS

In the following question a statement of Assertion (A) is followed by a statement	tof
Reason(R).Pick the correct option:	
A) Both A and R are true and R is the correct explanation of A.	
B) Both A and R are true but R is NOT the correct explanation of A.	
C) A is true but R is false.	
D) A is false but R is true.	
1. Assertion (A): If $n(A) = p$ and $n(B) = q$ then the number of relations from A to	В
is 2^{pq} .	
Reason(R): A relation from A to B is a subset of $A \times B$.	
Answer. A	
Solution: Every relation from set A to set B is a subset of $A \times B$.	
So R is true	
The number of elements in $A \times B$ is $p \times q$. So number of subsets of $A \times B$.i.e.	10
of relations from A to B is 2^{pq} .	
So A is true.	
2. Assertion (A): If $n(A) = m$, then the number of reflexive relations on A is m	
Reason(R) : A relation R on the set A is reflexive if $(a, a) \in R, \forall a \in A$.	
Answer: D	
Solution: A relation R is reflexive on the set A iff $(a,a) \in \mathbb{R} \forall a \in A$.	
So R is true.	
$n(A) = m$ then the number of reflexive relations on A is 2^{m^2-m} .	
So A is false.	
3. Assertion (A): Domain and Range of a relation $R = \{(x, y): x - 2y = 0\}$ define	d
on the set $A = \{1, 2, 3, 4\}$ are respectively $\{1, 2, 3, 4\}$ and $\{2, 4, 6, 8\}$	
Reason(R): Domain and Range of a relation R are respectively the sets	
$\{a: a \in A \text{ and } (a, b) \in R, \}$ and $\{b: b \in A \text{ and } (a, b) \in R\}$	
Answer: D	
Solution : Domain of a relation R is $\{x: x \in A \text{ and } (x, y) \in R\}$	
Solution: Domain of a relation R is $\{x: x \in A \text{ and } (x, y) \in R\}$. Range of a relation R is $\{y: y \in A \text{ and } (x, y) \in R\}$	

	$R = \{(2,1), (4,2)\}$ So A is false
4.	Assertion (A): A relation $R = \{ (1,1), (1,2), (2,2), (2,3)(3,3) \}$ defined on the set
	$A = \{1, 2, 3\} \text{ is reflexive.}$
	Reason(R): A relation R on the set A is reflexive if $(a, a) \in R, \forall a \in A$
	Answer: A
	Solution: A relation R on the set A is reflexive if $(x, x) \in R, \forall x \in A$
	So R is true For $\forall x \in A(x, x) \in P$ so P is reflexive and thus A is true
	Therefore answer is A.
5.	Assertion (A): A relation $R = \{ (1,1), (1,2), (2,2), (2,3)(3,3) \}$ defined on the set
	$A = \{1,2,3\}$ is symmetric
	Reason(R): A relation R on the set A is symmetric if $(a, b) \in R \implies (b, a) \in R$
	Answer:D
	Solution: A relation R on the set A is symmetric if $(x, y) \in R \implies (y, x) \in R$
	So, R is true (1.2) $\in P$ but (2.1) does not belong to P so P is not symmetric
	So A is false
6.	Assertion (A): A relation $R = \{ (1,1), (1,3), (1,5), (3,1)(3,3), (3,5) \}$ defined on
	the set $A = \{1,3,5\}$ is transitive.
	Reason(R): A relation R on the set A symmetric if $(a, b) \in R$ and $(a, c) \in R \implies$
	Answer:C
	Solution: A relation R on the set A transitive iff $(a, b) \in R$ and $(a, c) \in R \implies$
	$(a, c) \in \mathbb{R}$. So R is false
	As the condition of transitivity is satisfied, so A is true.
7.	Assertion (A): $A = \{1,2,3\}, B = \{4,5,6,7\}, f = \{(1,4), (2,5), (3,6)\}$ is a function
	from A to B. Then f is one – one Person(P): A function f is one – one if distinct elements of A have distinct
	images in B.
	Answer:A Solution: A function figure and if distinct elements of A have distinct images in
	B.
	So R is true
	As distinct elements of Set A have distinct images in the set B.
	So, A is true Thus A and R are true, and R is the correct explanation of A
	Thus it and it are true and it is the correct explanation of it.
8.	Assertion (A): Consider the function $f: R \to R$ defined by $f(x) = x^3$. Then f is
	one-one Reason(R): Every polynomial function is one-one
	Answer: C
	Solution: Every polynomial function is not one-one as $f(x) = x^2$ is not one one.
	So K is false.
	So A is true
	Thus A is true but R is false.

0	
9.	Assertion (A): If $X = \{0, 1, 2\}$ and the function $f: X \to Y$ defined by
	$f(x) = x^2 - 2$ is surjection then $Y = \{-2, -1, 0, 2\}$
	Reason(R): If $f: X \to Y$ is surjective if for all $y \in Y$ there exists $x \in X$ such that
	y = f(x)
	Answer: D
	Solution: A function is surjective or onto if $range = co - domain$, i.e. $f: X \to Y$ is
	surjective if for all $y \in Y$ there exists $x \in X$ such that $y = f(x)$
	So R is true.
	There is no x in X such that $f(x) = 0$, so range of f is not equal to the codomain,
	i.e f is not surjective
	So, A is false.
	Thus A is false but R is true.
10.	Assertion (A): A, B are two sets such that $n(A) = m$ and $n(B) = n$. The number
	of one-one functions from A to B is n_{p_m} , if $n \ge m$
	Reason(R): A function f is one –one if distinct elements of A have distinct images
	in B
	Answer: A
	Solution: A function f is one –one if distinct elements of A have distinct images in
	В.
	So R is true.
	For a function from set A to B is one-one iff $n(A) \leq n(B)$
	So A is true.

1	Assertion (A): A function $f: A \rightarrow B$, cannot be an onto function if $n(A) < n(B)$.
	Reason(R): A function f is onto if every element of co-domain has at least one pre-
	image in the domain
	Answer:A
2	Assertion (A): Consider the function $f: R \to R$ defined by $f(x) = \frac{x}{x^2+1}$. Then f is
	one – one
	Reason(R): $f(4)=4/17$ and $f(1/4)=4/17$
	Answer: D
3	Assertion (A): $n(A) = 5$, $n(B) = 5$ and $f : A \rightarrow B$ is one-one then f is bijection
	Reason(R): If $n(A) = n(B)$ then every one-one function from A to B is onto
	Answer: A
4	Assertion (A): Set A has 4 elements and set B has 5 elements. Then the number of
	bijective mappings from A to B is 5^4
	Reason(R): A mapping from A to B cannot be bijective if $n(A)$ is not equal to $n(B)$.
	Answer: D
5	Assertion (A): The identity relation on a set A is an equivalence relation.
	Reason (R): The Universal relation on a set A is an equivalence relation.
	Answer: B

2 MARKS QUESTIONS

1.	The relation R defined by $(a, b)R(c, d) \Rightarrow a + d = b + c$ on the A×A. Where
	$A = \{1, 2, 3, \dots, 10\}$ is an equivalence relation. Find the equivalence class of the
	element $(3,4)$.
	Solution: Let (3,4) R (a,b) on $A \times A$ where $A = \{1, 2, 3,, 10\}$
	$\Rightarrow 5 + b = 4 + a \Rightarrow b - a = 1$ $[(3 A)]_{-} = \{(1 2), (2 3), (3 A), (A 5), (6 7), (7 8), (8 9), (9 10)\}$
2	$\frac{\binom{n+1}{n}}{\binom{n+1}{n}}$ if n is odd
2.	Let $f: N \to N$ be defined by $f(n) = \begin{cases} \frac{2}{n} & \text{if n is out} \\ \frac{n}{2} & \text{if n is even} \end{cases}$ for all $n \in \mathbb{N}$. Is the function f
	one-one or not? Justify your answer
	Solution: Given function is not one-one, because 1 and 2 have the same image.
	$f(1) = \frac{1+1}{2} = 1$, $f(2) = \frac{2}{2} = 1$
3.	Consider $f: R_+ \to [-9, \infty)$ given by $f(x) = 5x^2 + 6x - 9$. Show that f is one-one.
	Let $f(r) = f(y) \Rightarrow 5r^2 + 6r - 9 = 5y^2 + 6y - 9$
	$\Rightarrow 5(x-y)(x+y) + 6(x-y) = 0$
	$\Rightarrow (x - y)(5x + 5y + 6) = 0$
	$\Rightarrow x = y$. Since $5x + 5y + 6 \neq 0$ for all $x, y \in R_+$
	Given function is one – one.
4.	Let R be the relation defined in the set $A = \{1, 2, 3, 4, 5\}$ by
	$R = \{(x, y): x, y \in A, x \text{ and } y \text{ are either both odd or both even}\}.$ Find R
	In Roster form.
	Solution: $R = \{(1 \ 1) \ (1 \ 3) \ (1 \ 5) \ (3 \ 1) \ (3 \ 3) \ (3 \ 5) \ (5 \ 1) \ (5 \ 3) \ (5 \ 5) \ (2 \ 2) \ (2 \ 4) \ (4 \ 2) \ (4 \ 4) \}$
5.	Check whether the following relation $R = \{(a, b): a < b\}$ defined on set of real
	numbers are reflexive and symmetric or not.
	Solution: for each $a \in R$, $a \le a$ is true. Given relation is reflexive.
	$(2,3) \in R$ but $(3,2) \notin R$ thus, for each $(a,b) \in R \implies (b,a) \in R$ Hence given relation is
	not symmetric.
6	Prove that the greatest integer function $f: R \to R$ given by $f(r) = [r]$ is neither
0.	one-one nor onto.
	Solution: $f(1.1) = 1, f(1.3) = 1, but 1.1 \neq 1.3, \therefore f is not one - one.$
	Range is set of integers only whereas codomain is set of real numbers.
	Range \neq codomain, \therefore f is not onto
7	x-2
/.	Let A = R – {1}. If $f: A \to A$ is a mapping defined by $f(x) = \frac{x}{x-1}$, show that f is one-
	one.
	Solution: One-One: $r=2$ $y=2$
	Let $f(x) = f(y) \Rightarrow \frac{x-2}{x-1} = \frac{y-2}{y-1}$
	(x-2)(y-1) = (y-2)(x-1)
	$\Rightarrow xy - x - 2y + 2 = xy - 2x - y + 2$
	$\Rightarrow x - y = 0$
	$\Rightarrow x = y$
0	Given function is one – one. x^{-2}
0.	Let A = R - {1}. If $f: A \to A$ is a mapping defined by $f(x) = \frac{x-2}{x-1}$, show that f is onto.
	Solution: Onto: Let $\frac{x-2}{x-1} = y \implies x-2 = y(x-1)$

	$\Rightarrow x - 2 = xy - y$
	x(1-y) = 2-y
	$r - \frac{2-y}{2}$
	$x = \frac{1-y}{1-y}$
	for each $y \in A$ there exist $x - \frac{2-y}{2-y} \in A$ such that $f(x) - y$
	$\int of each y \in A$, there exist $x = \frac{1}{1-y} \in A$ such that $f(x) = y$.
	Given function is onto.
9.	A function $f: A \to B$ defined as $f(x) = 2x$, is both one-one and onto. If
	$A = \{1, 2, 3, 4\}$, then find the set B.
	Solution: $f = \{(1,2), (2,4), (3,6), (4,8)\}.$
	Range of $f = \{2, 4, 6, 8\}$.
	As function is onto $range = codomain$.
	So $B = \{2, 4, 6, 8\}.$
10.	Let L be the set of all lines in a plane and R be the relation in L defined as
	$R = \{(L_1, L_2): L_1 \text{ is perpendicular to } L_2\}$. Is the relation R transitive? Justify your
	answer.
	Solution: R is not transitive
	Let $(L_1, L_2) \in R$ and $(L_2, L_3) \in R$
	\Rightarrow L ₁ is perpendicular to L ₂ and L ₂ is perpendicular to L ₂
	\Rightarrow Ly is norallel to $L_2 \Rightarrow L_3$ is not perpendicular to L_2
	$\Rightarrow (I, I_{2}) \notin R$
	Hence R is not transitive

1.	Is the relation R = {(a, b): $a \le b^2$ } defined on set of real numbers transitive? Justify
	your answer.
	Answer: No, it is not transitive
	$(5,3) \in R \text{ and } (3,2) \in R \text{ but } (5,2) \notin R.$
2.	Determine whether the relation R defined on the set of all real numbers as
	R = {(a, b): a, b and $a - b + \sqrt{3} \in S$, where S is the set of all irrational numbers}, is
	symmetric.
	Answer: $(4\sqrt{3}, 3\sqrt{3}) \in \mathbb{R}$ but $(3\sqrt{3}, 4\sqrt{3}) \notin \mathbb{R}$.
	So, R is not symmetric.
3.	Is the relation R defined on the set of all real numbers as
	$R = \{(a, b): a > b\}$, reflexive, symmetric and trasitive? Justify your answer.
	Answer: $(a, a) \notin R$.So, R is not reflexive.
	Let $(a, b) \in R \implies a > b$, but b is not greater than $a \implies (b, a) \notin R$
	Therefore R is not symmetric.
	$a > b$ and $b > c \Rightarrow a > c$
	Therefore R is transitive.
4.	Show that the relation R defined on the set A of all triangles in a plane as
	$R = \{(T_1, T_2): T_1 \text{ is similar to } T_2\} \text{ is an equivalence relation.}$
5.	Show that the relation R in the set of \mathbb{R} real numbers, defined as
	$R = \{(a, b): a \le b^3\} \text{ is not transitive.}$
	Answer: $(9,4) \in R$ and $(4,2) \in R$ but $(9,2) \notin R$. Hence R is not transitive

3 MARKS QUESTIONS

1.	Show that the relation R in the set $\{1, 2, 3\}$ given by $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (3, 3), (1, 2), (3, 3), (1, 2), (3, 3), (1, 2), (3, 3), (1, 2), (3, 3)$
	(2, 3)} is reflexive but neither symmetric nor transitive.
	Solution: Let $A = \{1, 2, 3\}$
	The relation R is defined on A is given by $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)\}$
	Now, we have to show that R is reflexive but neither symmetric nor transitive.
	Reflexive:
	Clearly, $(a, a) \in R$ for every $a \in A$
	Hence, R is reflexive
	$\frac{\text{Symmetric:}}{\text{Clearly}(1,2) \in \mathbb{P}} \text{here}(2,1) \notin \mathbb{P}$
	Clearly, $(1, 2) \in K$, $\mathcal{Dut}(2, 1) \notin K$ Thus for every $(a, b) \in R$, $(b, a) \notin R$
	Hence R is not symmetric
	Transitive:
	For $(1, 2) \in R$ and $(2, 3) \in R \implies (1, 3) \notin R$
	Thus, $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \notin R$
	Hence, R is not transitive.
	Therefore, R is reflexive but neither symmetric nor transitive.
2.	Show that the relation R in the set $\{1, 2, 3, 4\}$ given by
	$R = \{(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)\}$ is reflexive and transitive but not
	Solution: Let $\Lambda = \{1, 2, 3, 4\}$
	The relation R is defined on A is given by $R = \{(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 4)\}$
	$3), (3, 2)\}$
	Now, we show that the relation R is reflexive and transitive but not symmetric.
	Reflexive:
	Clearly, $(a, a) \in R$ for every $a \in A$
	Hence, R is reflexive.
	Symmetric: Clearly $(1, 2) \in \mathbb{R}$ but $(2, 1) \notin \mathbb{R}$
	Clearly, $(1, 2) \in R$, $\mathcal{Dul}(2, 1) \notin R$ Thus for every $(a, b) \in P$, $(b, a) \notin P$
	Hence R is not symmetric
	Transitive:
	For every $(a,b) \in R$ and $(b,c) \in R \Rightarrow (a,c) \in R$
	Hence, R is transitive.
	Therefore, R is reflexive and transitive but not symmetric.
3.	Check whether the relation R defined in the set $A = \{1, 2, 3, 4, 5, 6\}$ as
	$D = \{(a, b), b = a, b, 1, a, b, c, A\}$ is softening summatric as transitive
	$R = \{(a, b): b = a + 1, a, b \in A\}$ is reflexive, symmetric of transitive.
	Solution: Let $A = \{1, 2, 3, 4, 5, 6\}$
	R be the relation defined as $R = \{(a, b): b = a + 1\}$
	i.e; $R = \{(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)\}$
	To check R is reflexive:
	Clearly, $(a, a) \notin K$ for every $a \in A$ Hence, P is not reflexive
	To check R is symmetric:
	Clearly, $(1,2) \in R$, but $(2,1) \notin R$

	Thus, for every $(a, b) \in R$, $(b, a) \notin R$
	Hence, R is not symmetric
	Take $(1,2) \in R$, and $(2,3) \in R$ but $(1,3) \notin R$
	Thus, $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$
	Hence, R is not transitive.
4.	Determine whether the relation R in the set $A = \{1, 2, 3,, 13, 14\}$ defined as
	$R = \{(x, y): 3x = y = 0, x, y \in A\}$ is reflexive or symmetric or transitive
	$\mathbf{A} = \{(x, y), 3x = y = 0, x, y \in \mathbf{A}\}$ is reflexive of symmetric of transitive.
	Solution: Given $A = \{1, 2, 3,, 13, 14\}$
	The relation R is defined as $R = \{(1, 3), (2, 6), (3, 9), (4, 12)\}$
	$\frac{\text{To check R is reflexive:}}{(r_1, r_2)(r_1, r_2)(r_2, r_3)(r_1, r_2)(r_2, r_3)(r_1, r_3)(r_$
	Clearly, $(a, a) \notin R$ for every $a \in A$ Hence R is not reflexive
	To check R is symmetric:
	Clearly, $(1,3) \in R$, but $(3,1) \notin R$
	Thus, For every $(a, b) \in R$, $(b, a) \notin R$
	To check R is Transitive:
	Take $(1,3) \in R$, and $(3,9) \in R$ but $(1,9) \notin R$
	Thus, $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$
	Hence, R is not transitive.
5	Determine whether the relation R in the set N of natural numbers defined as
5.	$B = \{(x, y): y = x + 5 and x < 4\}$ is reflexive symmetric or transitive
	Solution: Given $N = Set of all natural numbers$
	The relation P is defined on the set N as $P = \{(x, y), y = x, j \in G, m, d, x \in A\}$
	The relation K is defined on the set N as $K = \{(x, y), y = x + 3 \text{ and } x < 4\}$
	1.e, $K = \{(1, 0), (2, 7), (3, 8)\}$
	To check R is reflexive:
	Clearly, $(a, a) \notin R$ for every $a \in N$
	Hence, K is not reflexive To check B is symmetric:
	Clearly, $(1, 6) \in R$, but $(6, 1) \notin R$
	Thus, For every $(a, b) \in R$, $(b, a) \notin R$
	Hence, R is not symmetric
	<u>To check R is Transitive:</u> For transitive, we have to show for $(a, b) \in P$ and $(b, c) \in P$ then $(a, c) \in P$
	But in this case, in the relation R, for every order pair (a, b), there exists no order pair
	as (b, c).
	In such a case, R is also transitive.
	i nereiore, the relation K is neither reflexive nor symmetric but transitive.
6.	Prove that the Greatest Integer Function $f : R \to R$, given by $f(x) = [x]$, is neither
	one-one nor onto, where $[x]$ denotes the greatest integer less than or equal to x .
	Solution: $f : R \to R$, given by $f(x) = [x]$

	Now, we prove that f is nother one one nor onto
	<u>To Prove f is not one-one:</u>
	Clearly, we have that $f(1.1) = [1.1] = 1$
	$f(1.2) = [1.2] = 1, \dots, \dots, f(1.9) = [1.9] = 1$
	From this, we conclude that different elements in the domain of f have same images
	in the co-domain of f .
	Hence, f is not one-one function.
	To Prove f is not onto:
	we know that codomain of $f = R$ (set of all real numbers)
	Range of $f = Z$ (set of all integers)
	Clearly, codomain of $f \neq$ Range of f
	Hence, f is not onto.
	Therefore, f is neither one-one nor onto.
7.	Show that the Modulus Function $f : \mathbb{R} \to \mathbb{R}$, given by $f(x) = x $, is neither one-one
	nor onto, where $ x $ is x, if x is positive or 0 and $ x $ is $-x$, if x is negative.
	Solution: $f: R \to R$ is given $byf(x) = x = \begin{cases} x, & \text{if } x \ge 0 \\ x \ge 0 \end{cases}$
	(-x, if x < 0)
	Now, we prove that f is neither one-one nor onto
	<u>I o Prove f is not one-one:</u>
	Clearly, we have that $f(1) = 1 = f(-1)$
	f(2) = 2 = f(-2) and so on.
	From this, we conclude that different elements in the domain of f have same images in
	the co-domain of f.
	Hence, <i>f</i> is not one-one function.
	<u>To Prove f is not onto:</u>
	we know that codomain of $f = R$ (set of all real numbers)
	Range of $f = R^+$ (set of all non – negative real numbers)
	Clearly, codomain of $f \neq$ Range of f
	Hence, f is not onto.
8.	Show that the function $f: R \to R$ is given $byf(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x = 0 \\ -1, & \text{if } x < 0 \end{cases}$ (this function
	is called signum function) is neither one-one nor onto.
	Solution: The function $f: R \to R$ is given by $f(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x = 0 \\ -1, & \text{if } x < 0 \end{cases}$
	Now, we prove that f is neither one-one nor onto.

	To Prove f is not one-one:
	Clearly, we have that $f(1) = 1$, $f(2) = 1$, $f(3) = 1$, and so on.
	f(-1) = -1, $f(-2) = -2$, and so on.
	From this, we conclude that different elements in the domain of f have same images in
	the co-domain of f.
	Hence, f is not one-one function.
	To Prove f is not onto:
	we know that codomain of $f = R$ (set of all real numbers)
	Range of $f = \{-1, 0, 1\}$
	Clearly, codomain of $f \neq$ Range of f
	Hence, f is not onto.
	Therefore, f is neither one-one nor onto.
9.	Prove that the function $f: N \to N$ defined by $f(x) = x^2 + x + 1$ is one-one
	but not onto.
	Solution: The function $f: N \to N$ given by $f(x) = x^2 + x + 1$
	Now we prove that f is one-one but not onto.
	To prove f is one-one:
	Let $x_1, x_2 \in N$ such that $f(x_1) = f(x_2)$
	$\Rightarrow x_1^2 + x_1 + 1 = x_2^2 + x_2 + 1$
	$\Rightarrow x_1^2 - x_2^2 + x_1 - x_2 = 0$
	$\Rightarrow (x_1^2 - x_2^2) + (x_1 - x_2) = 0$
	$\Rightarrow (x_1 + x_2)(x_1 - x_2) + (x_1 - x_2) = 0$
	$\Rightarrow (x_1 - x_2)[(x_1 + x_2) + 1] = 0$
	$\Rightarrow (x_1 - x_2) = 0 (\because [(x_1 + x_2) + 1] > 0 \text{ as } x_1, x_2 \text{ in domain } \mathbb{N})$
	$\Rightarrow x_1 = x_2$
	Hence, f is one-one
	To prove f is onto:
	we have $f(1) = 3$, $f(2) = 7$ and so on.
	Thus, $f(x) = x^2 + x + 1 \ge 3$ for every $x \in N$ (domain) Clearly, $f(x)$ not taking values 1 and 2
	Thus, the every element of co-domain in N has no pre-image in the domain N
	Hence, f is not onto.
10.	Let $f: W \to W$ be defined as $f(x) = x - 1$, if x is odd and
	f(x) = x + 1, if x is even. Show that f is both one-one and onto.
	Solution:
	$f: W \to W$ be defined as $f(x) = x - 1$, if x is odd and

f(x) = x + 1, if x is even. To Prove f is one-one: <u>Case I:</u> when x_1 and x_2 are even number Now, consider $f(x_1) = f(x_2)$ $\Rightarrow x_1 + 1 = x_2 + 1$ $\Rightarrow x_1 = x_2$ Hence, f is one-one <u>**Case II:**</u> when x_1 and x_2 are odd number Now, consider $f(x_1) = f(x_2)$ $\Rightarrow x_1 - 1 = x_2 - 1$ $\Rightarrow x_1 = x_2$ Hence, f is one-one. **<u>Case III:</u>** when x_1 is odd and x_2 is even number Here, $x_1 \neq x_2$ Also, in this case $f(x_1)$ is even and $f(x_2)$ is odd. Hence, $f(x_1) \neq f(x_2)$ Therefore, f is one-one. To Prove f is onto: For every even number 'y' in co-domain there exists odd number y + 1 in domain and for every odd number 'y' in co-domain there exists even number y - 1 in domain such that f(x) = y. Hence, f is onto Therefore, f is both one-one and onto.

1.	Consider $f: \mathbb{R}^+ \to [4, \infty)$ given by $f(x) = x^2 + 4$. Show that f is both one-one and
	onto.
2.	Let A = R - $\left\{\frac{2}{3}\right\}$ and B = R - $\left\{\frac{2}{3}\right\}$. If f: A \rightarrow B and f(x) = $\frac{2x-1}{3x-2}$, then
	prove that the function f is one-one and onto.
3.	Show that the function $f: R \to R$ defined by $f(x) = \frac{x}{x^2+1}$, $\forall x \in R$ is neither one-
	one nor onto.
4.	Let R be the relation on set of all integer Z defined by $R = \{(a, b): a - b \le 3\}$.
	Check whether R is an equivalence relation.
	Answer: R is reflexive, symmetic but not transitive

5 MARKS QUESTIONS

1.	Let R be the relation in the set Z of integers given by
	$R = \{(a, b): 2 \text{ divides } a - b\}$. Show that the relation R equivalence? Write the
	equivalence class [0].
	Solution :
	Given $R = \{(a, b) : 2 \text{ divides } a - b\}$
	For equivance relation we have to check
	(i) Reflexive:
	If $(a - b)$ is divisible by 2 then
	$\Rightarrow (a - a) = 0$ is also divisible by 2
	$\Rightarrow (a, a) \in \mathbb{R}$
	Hence R is Reflexive $\forall a b \in 7$
	(ii) Symmetric:
	(ii) Symmetric. If (a, b) is divisible by 2 then
	If $(a - b)$ is divisible by 2 then, (a - b) is also divisible by 2
	$\Rightarrow (b - a) = -(a - b) \text{ is also divisible by } 2$
	$\Rightarrow (a,b) \in R \text{ and } (b,a) \in R$
	Hence R is Symmetric $\forall a, b \in \mathbb{Z}$
	(111) Transitive:
	If $(a - b)$ and $(b - c)$ are divisible by 2 then,
	$\Rightarrow a - c = (a - b) + (b - c)$ is also divisible by 2
	\Rightarrow (a,b) \in R, (b,c) \in R and (a,c) \in R.
	Hence R is Transitive $\forall a,b,c \in Z$
	\Rightarrow As Relation R is satisfying Reflexive , Symmetric and Transitive.
	Hence R is an equivalence relation.
	Now equivalence class [0]
	$R = \{(a, b): 2 \text{ divides } (a - b)\} \Rightarrow (a - b) \text{ is a multiple of } 2.$
	To find equivalence class 0, put b=0
	So, (a=0) is a multiple of 2
	\Rightarrow a is a multiple of 2
	So, In the set Z of integers, all the multiple of 2 will come in equivalence class [0]
	Hence, equivalence class $[0] = \{2x : x \in Z\}$
2.	Show that the relation R defined by $(a, b)R(c, d) \Leftrightarrow a + d = b + c$ on the set
	\times N is an equivalence relation. Also, find the equivalence classes [(2,3)] and
	1,3)].
	Solution:
	Given that, R be the relation in $N \times N$ defined by (a, b) R (c, d)
	if $a + d = b + c$ for (a, b), (c, d) in N × N.
	Reflexive:
	Let $(a, b) R (a, b) \Rightarrow a + b = b + a$
	which is true since addition is commutative on N.
	\Rightarrow R is reflexive.
	Symmetric:
	Let (a, b) R (c, d) \Rightarrow a + d = b + c
	\Rightarrow b + c = a + d \Rightarrow c + b = d + a
	\Rightarrow (c, d) R (a, b) \Rightarrow R is symmetric
	Transitive
	\Rightarrow (a b) R (e f) for (a b) (c d) (e f) in N × N
	Let (a, b) R (c, d) and (c, d) R (e, f)
	\Rightarrow a + d = b + c and c + f = d + e
	$\Rightarrow (a + d) - (d + e) = (b + c) - (c + f) \Rightarrow a - e = b - f \Rightarrow a + f = b + e$
	\Rightarrow (a, b) R (e, f) \Rightarrow R is transitive.

	Hence, R is an equivalence relation.
	Equivalence Classes:
	The equivalence class of (a, b) is the set of all pairs (c, d) such that $a + d = b + c$.
	$\Rightarrow a - b = c - a$ The equivalence classes of [(2, 2)] is
	Put $a = 2$ and $b = 3$
	r dt d = 2 dt d b = 3 c - d = 2 - 3
	d - c = 1
	$[(2 \ 3)] = \{(c \ d) : d - c = 1 \ \forall c \ d \in \mathbb{Z} \}$
	The equivalence classes of $[(1,3)]$ is
	Put a=1 and b=3
	$c-d = 1-3 \Rightarrow d-c = 2$
	$[(1,3)] = \{(c,d) : d - c = 2 \forall c,d \in \mathbb{Z} \}$
3.	Show that the relation R in the set of \mathbb{R} real numbers, defined as
	$R = \{(a, b): a \le b^{\circ}\}$ is neither reflexive nor symmetric nor transitive.
	Solution: Given $\mathbb{R} = set of all real numbers$
	The relation R in the set \mathbb{R} defined as $R = \{(a, b): a < b^3\}$
	Now we prove that R is neither reflexive nor symmetric nor transitive.
	To show R is not reflexive:
	We know that $a \le a^3$ is not true for any positive real number less than 1.
	For example, for $a = \frac{1}{2}$, $\frac{1}{2} \leq \left(\frac{1}{2}\right)^3 = \frac{1}{2}$
	Thus clearly $(a, a) \notin R$ for every $a \in \mathbb{R}$
	Hence R is not reflexive
	To show R is not symmetric:
	Take $a = 1$ and $b = 2$
	Now, $a = 1 \le 2^3 = b^3 \Rightarrow a \le b^3 \Rightarrow (a, b) \in R$
	But, $b = 2 \leq (1)^3 = 1 = a \Rightarrow b \leq a^2 \Rightarrow (b, a) \notin R$
	Thus, $(a, b) \in R \Rightarrow (b, a) \notin R$
	Hence, R is not symmetric.
	To show R is not transitive:
	Let us take $a = 10, b = 4, c = 2$
	$(a,b) \in R = (10,4) \in R \text{ as } 10 \le 4^3 = 64$
	$(b,c) \in R = (4,2) \in R \text{ as } 4 \le 2^3 = 8$
	But, $(a, c) \notin R \text{ as } 10 \leq 2^3 = 8$
	Thus, $(a, b) \in R$ and $(b, c) \in R \implies (a, c) \notin R$
	Hence, K is not transitive.
	Therefore, the relation K is neither renexive, nor symmetric nor transitive.
4.	Let A = $\{1, 2, 3, \dots, 9\}$ and $(a, b)R(c, d)if$
	$ad = bc \ for \ (a, b), \ (c, d) \ in \ A \times A$. Prove that R is an equivalence relation.
	Solution: Given $A = \{1, 2, 3, \dots, 9\}$
	The relation R is defined as $(a, b)R(c, d)if ad = bc for (a, b), (c, d)in A \times A$
	Now, we prove that R is an equivalence relation.
	<u>I O SNOW K IS PEHEXIVE:</u>
	Clearly, $ab = ba$ for every $a, b \in A$
	$\Rightarrow (u, p)\kappa(u, p) \text{ for every } (u, p) \in A \times A$ Hence P is reflexive
	To show R is symmetric.
	Let (a, b) R (c, d)

	$\Rightarrow ad = bc$
	$\Rightarrow da = cb$
	$\Rightarrow cb = da$
	$\Rightarrow (C, 0) R (a, b)$ Hence R is symmetric
	To show R is transitive:
	Let (a, b) R (c, d) $\Rightarrow ad = bc$ (1)
	And (c, d) R (e, f) \Rightarrow $cf = de$ (2)
	Multiply (1) and (2), we get
	(ad)(cf) = (bc)(de) $\Rightarrow af = ba$
	$\Rightarrow a_j = be$ $\Rightarrow (a, b)R(e, f)$
	Hence, R is transitive.
	Therefore, R is reflexive, symmetric and transitive.
_	Hence, R is an equivalence relation.
5.	Consider a function $f: \left[0, \frac{n}{2}\right] \to R$ given by $f(x) = sinx$ and $g: \left[0, \frac{n}{2}\right] \to R$ given
	by $g(x) = cosx$. Show that f and g are one-one but $f + g$ is not one-one.
	Solution:
	To prove f is one-one:
	The function $f: \left[0, \frac{\pi}{2}\right] \to R$ given by $f(x) = sinx$
	Clearly, different elements in the domain $\left[0, \frac{\pi}{2}\right]$ of 'f' have distinct images in the
	co-domain of 'f'
	Hence, f is one-one.
	To prove g is one-one:
	The function $g: \left[0, \frac{\pi}{2}\right] \to R$ given by $g(x) = \cos x$
	Clearly, different elements in the domain $\left[0, \frac{\pi}{2}\right]$ of 'g' have distinct images in the
	co-domain of 'g'
	Hence, ' g ' is one-one.
	To prove $f + g$ is one-one:
	(f+g)(x) = f(x) + g(x) = sinx + cosx
	(f + g)(0) = sin0 + cos0 = 0 + 1 = 1
	$(f+g)\left(\frac{\pi}{2}\right) = \sin\frac{\pi}{2} + \cos\frac{\pi}{2} = 1 + 0 = 1$
	From this, we conclude that different elements in the domain of $f + g$ have same
	images in the co-domain of $f + g$.
	Hence, $f + g$ is not one-one.

EXERCISE

1	Let $f: R \to R$ be a function defined as $f(x) = 4x + 3$, then show that f is one-one
	and onto.
2	A function $f: [-4,4] \rightarrow [0,4]$ is given by $f(x) = \sqrt{16 - x^2}$. Show that f is an onto
	function but not a one-one function. Further, find all possible values of ' a ' for
	which $f(a) = \sqrt{7}$.
3	A relation R is defined on a set of real numbers \mathbb{R} as $R = \{(x, y): xy \text{ is an irrational number}\}$
	Check whether R is reflexive, symmetric and transitive or not.
4	Show that the relation R in the set A = { $x \in Z: 0 \le x \le 12$ }, given by
	$R = \{(a, b): a - b \text{ is divisible by 3}\}$ is an equivalence relation.

CASE STUDY QUESTIONS

II	Priya and Surya are playing monopoly in their house during COVID. While rolling
	the dice their mother Chandrika noted the possible outcomes of the throw every
	time belongs to the set {1, 2, 3, 4, 5, 6}. Let A denote the set of players and B be the
	set of all possible outcomes. Then $A = \{P, S\}$ $B = \{1, 2, 3, 4, 5, 6\}$. Then
	answer the below questions based on the given information (each question carries
	one mark)
	one mark)
	(a) Let $D, D \to D$ be defined by $D =$
	(a) Let $K: B \to B$ be defined by $K = (f - h)$ both a and h are either add on even), then is R on Equivalence
	{(<i>a</i> , <i>b</i>) both <i>a</i> and <i>b</i> are either odd or even}, then is K an Equivalence relation?
	(b) Chandrika wants to know the number of functions from A to B. How many
	numbers of functions are possible?
	(c) Let R be a relation on B defined by $R =$
	{(1, 2), (2, 2), (1, 3), (3, 4), (3, 1), (4, 3), (5, 5)}. Then is R relexive,
	symmetric and transitive?
	(d) Let $R: B \to B$ be defined by $R =$
	{(1, 1), (1, 2), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)} then is R symmetric?
	Justify
	Solution:
	(a) Yes, it is equivalence.
	The relation is reflexive, symmetric and transitive hence it is Equivalence.
	(b) If $n(A) = m$, $n(B) = n$, then the number of functions from A to B is n^{m}
	Ans: 6^2
	(c) $\Delta s(11) \notin R$ It is not reflexive
	$\Lambda_{s}(1,2) \in R$ but (2.1) $\notin R$ it is not symmetric
	As (1,2) $\in R$ and (2,4) $\in R$ but (1,4) $\notin R$ it is not transitive
	Hence none $A_{3}(1,3) \subset A$ and $(3,7) \subset A$ out $(1,7) \not\subset A$, it is not transitive
	(d) No. (1.2) $\subset R$ but (2.1) $\notin R$ it is not symmetric
	(d) No, $(1,2) \in K$ but $(2,1) \notin K$ it is not symmetric
III	In two different societies, there are some school going students – including girls as
	well as boys. Satish forms two sets with these students, as his college project.
	Let $A = \{a_1, a_2, a_3, a_4, a_5\}$ and $B = \{b_1, b_2, b_3, b_4\}$ where $a'_i s, b'_i s$ are the school going students of first and second society respectively.
	Using the information given above, answer the following question
	(a) Satish wishes to know the number of reflexive relations defined on set <i>A</i> . How many such relations are possible? (1mark)

