ELECTRIC CHARGES AND FIELDS

			MCQ (1mark)		
1.	Two positive	ions each carrying a	charge q are separated	by a distance d. If I	is the force of
	repulsion between the ions, the number of electrons missing from each ion				
	(a) $\frac{4\pi\epsilon_0 F d^2}{4\pi\epsilon_0 F d^2}$	$4\pi\epsilon_0Fe^2$	$\sqrt{4\pi\varepsilon_0Fd^2}$	$4\pi\varepsilon_0Fe^2$	
	(a) $\frac{1}{e^2}$	$(b)\sqrt{\frac{d^2}{d^2}}$	(c) $\sqrt{\frac{4\pi\varepsilon_0 F d^2}{e^2}}$	(d) $\frac{d^2}{d^2}$	
2.	The total electric flux emanating from an alpha particle is				
	(a) 2e/ ɛ 0	(b)e/ ɛ 0	(c) 4e/	$\varepsilon 0$ (d) e2 / $\varepsilon 0$	
3.	A charge Q is placed at each of the opposite corners of a sphere. A charge q is placed at each of the other corners .If the net electrical force on Q is zero then Q/q is equal to				
	(a) -2√2	(ხ	o) -1	(c) 1	(d) $-1/\sqrt{2}$
4.	A cylinder of radius r and length l is placed in a uniform electric field parallel to the axis of the cylinder. The total flux for the surface of the cylinder is given by				
	(a) zero	(b) πr^2	(c) $\pi \to r^2$	(d) $2E(\pi r^2)$)
	Gaussian surface of radius R. Which of the following is true according to the Gauss's law $ \begin{pmatrix} q_1 & q_2 \\ q_2 & q_3 \end{pmatrix} q_4 $				
	(a)	$\oint_{S} (\vec{E}$	$(1 + \vec{E}_2 + \vec{E}_3).d\vec{s} = 0$	$\frac{q_1+q_2+q_3}{2\varepsilon_0}$	
	(b)	$\oint_{s} (\vec{E})$	$(1 + \vec{E}_2 + \vec{E}_3).d\vec{s} = 0$	$\frac{(q_1+q_2+q_3)}{\varepsilon_0}$	
		$\oint_{\mathcal{S}} (\vec{E})$	$d_1 + \vec{E}_2 + \vec{E}_3). d\vec{s} = -\frac{1}{2}$ $d_1 + \vec{E}_2 + \vec{E}_3). d\vec{s} = -\frac{1}{2}$	0	
	(b)	$\oint_{S} (\vec{E}) \\ \oint_{S} (\vec{E}) $		$(q_1+q_2+q_3+q_4)$	
6.	(b) (c) (d) Seven charge	$\oint_s(\vec{E})$ $\oint_s(\vec{E})$ None es of equal magnitud	$f_1 + \vec{E}_2 + \vec{E}_3$). $d\vec{s} = -\frac{1}{2}$	$(q_1+q_2+q_3+q_4)$ ε_0 e corners of a cube	e of side b. The ford
6.	(b) (c) (d) Seven charge	$\oint_s(\vec{E})$ $\oint_s(\vec{E})$ None es of equal magnitud	$f_1 + \vec{E}_2 + \vec{E}_3$). $d\vec{s} = \frac{1}{2}$ e of the above de q are placed at the	$\frac{(q_1+q_2+q_3+q_4)}{\varepsilon_0}$ e corners of a cube he cube is	e of side b. The ford 2KQq/3b
	(b) (c) (d) Seven charge experienced b (a) Zero Electric charge of the wire	$\oint_{s}(\vec{E} + f_{s})(\vec{E} + f$	$\vec{r}_1 + \vec{E}_2 + \vec{E}_3). d\vec{s} = \frac{1}{2}$ e of the above de q are placed at the placed at the center of t (c) 7KQq/3b puted along a long straighter ther cylindrical surface	$\frac{(q_1+q_2+q_3+q_4)}{\varepsilon_0}$ e corners of a cube he cube is (d) ght wire of radius 1:	2KQq/3b mm. The charge per cr
	(b) (c) (d) Seven charge experienced b (a) Zero Electric charge of the wire	$\oint_{s}(\vec{E} + f_{s})(\vec{E} + f$	$\vec{r}_1 + \vec{E}_2 + \vec{E}_3). d\vec{s} = \frac{1}{2}$ e of the above de q are placed at the placed at the center of t (c) 7KQq/3b puted along a long straighter ther cylindrical surface	$\frac{(q_1+q_2+q_3+q_4)}{\varepsilon_0}$ e corners of a cube he cube is (d) ght wire of radius 11 ce of length L me	2KQq/3b mm. The charge per cr
6. 7. 8	(b) (c) (d) Seven charge experienced b (a) Zero Electric charge of the wire symmetrically (a) Q/ ɛ 0	$\oint_{s} (\vec{E} + f_{s}) (\vec{E} + f_{s}$	$\vec{r}_1 + \vec{E}_2 + \vec{E}_3). d\vec{s} = \frac{1}{2}$ e of the above de q are placed at the placed at the center of t (c) 7KQq/3b puted along a long straighther cylindrical surface igh the surface is	$\frac{(q_1+q_2+q_3+q_4)}{\varepsilon_0}$ e corners of a cube he cube is (d) ght wire of radius 1: ce of length L me (d)	2KQq/3b mm. The charge per creater encloses the wind $Q/L \ 10^{-3} \varepsilon_0$
7.	(b) (c) (d) Seven charge experienced b (a) Zero Electric charge of the wire symmetrically (a) Q/ε_0 A hemisphere the centre is of	$\oint_{s} (\vec{E} + f_{s}) (\vec{E} + f_{s}$	$\vec{r}_{1} + \vec{E}_{2} + \vec{E}_{3}). d\vec{s} = \frac{1}{2}$ e of the above de q are placed at the placed at the center of t (c) 7KQq/3b puted along a long straig ther cylindrical surface igh the surface is (c) QL/ 10 ⁻³ ε_{0}	$\frac{(q_1+q_2+q_3+q_4)}{\varepsilon_0}$ e corners of a cube he cube is (d) ght wire of radius 1: ce of length L me (d)	2KQq/3b mm. The charge per creater encloses the wind) Q/L $10^{-3}\varepsilon_0$ the diameter away from

ANSWERS

1.(a) 2. (a) 3. (a) 4. (a) 5.(b) 6. (d) 7. (b) 8. (a)