INVERSE TRIGONOMETRIC FUNCTIONS

MULTIPLE CHOICE QUESTIONS

Q.NO	QUESTIONS AND SOLUTIONS
1	The principal value of $cos^{-1}\left(\frac{-1}{2}\right)$
	(a) $\frac{2\pi}{3}$ (b) $\frac{\pi}{3}$ (iii) $\frac{-\pi}{3}$ (d) $\frac{-\pi}{6}$
	Solution: We have $\cos^{-1}(-x) = \pi - \cos^{-1}(x)$
	$\cos^{-1}\left(\frac{-1}{2}\right) = \pi - \cos^{-1}\left(\frac{1}{2}\right).$
	$= \pi - \frac{\pi}{3} = \frac{2\pi}{3}$
	Ans: (a)
2	The principal value of $sin^{-1}\left[sin\left(\frac{3\pi}{5}\right)\right]$
	(a) $\frac{3\pi}{5}$ (b) $\frac{2\pi}{5}$ (iii) $\frac{-2\pi}{5}$ (d) $\frac{\pi}{5}$
	Solution: We have $sin^{-1}\left[sin\left(\frac{3\pi}{5}\right)\right] = sin^{-1}\left[sin\left(\pi - \frac{3\pi}{5}\right)\right]$
	$=sin^{-1}\left[sin\left(\frac{2\pi}{5}\right)\right]$
	$= \frac{2\pi}{5}$
	Ans. (b)
3	The value of: $tan^{-1}\sqrt{3} - sec^{-1}(-2)$ is
	(a) $\frac{\pi}{6}$ (b) $\frac{-\pi}{6}$ (c) $\frac{-\pi}{3}$ (d) 0
	Solution: We have $\sec^{-1}(-x) = \pi - \sec^{-1}(x)$.
	$\therefore \tan^{-1} \sqrt{3} - \sec^{-1} (-2) = \frac{\pi}{3} - (\pi - \frac{\pi}{3}) = -\frac{\pi}{3}$
	Ans: (c)
4	The value of $sin\left[\frac{\pi}{3} - sin^{-1}\left(\frac{-1}{2}\right)\right]$ is
	(a) 0 (b) 1 (c) -1 (d) 2
	Solution: We have $\sin^{-1}(-x) = -\sin^{-1}(x)$

$$\frac{1}{3} \sin\left[\frac{\pi}{3} - \sin^{-1}\left(\frac{-1}{2}\right)\right] = \sin\left[\frac{\pi}{3} - \left(\frac{-\pi}{6}\right)\right] = \sin\left(\frac{\pi}{2}\right) = 1$$
Ans: (b)
5 The principal value of $\cos^{-1}\left(\cos\left(\frac{-\pi}{3}\right)\right)$ is
(a) $\frac{7\pi}{3}$ (b) $\frac{\pi}{3}$ (iii) $\frac{-\pi}{3}$ (d) $\frac{-7\pi}{3}$
Solution: We have $\cos(-x) = \cos x$
 $\therefore \cos^{-1}\cos\left(\frac{-7\pi}{3}\right) = \cos^{-1}\cos\left(\frac{7\pi}{3}\right)$
 $= \cos^{-1}\cos\left(2\pi + \frac{\pi}{3}\right)$
 $= \cos^{-1}\cos\left(\frac{2\pi}{3} + \frac{\pi}{3}\right)$
 $= \cos^{-1}\cos\left(\frac{\pi}{3}\right) = \frac{\pi}{3}$
Ans: (b)
6 The value of $\tan^{-1}\sqrt{3} - \cot^{-1}(-\sqrt{3})$ is
(a) $\frac{\pi}{2}$ (b) $\frac{-\pi}{2}$ (c) $\frac{-\pi}{3}$ (d) $\frac{\pi}{6}$
Solution: $\cot^{-1}(-\sqrt{3}) = \pi - \cot^{-1}(\sqrt{3}) = \pi - \frac{\pi}{6} = 5\frac{\pi}{6}$
 $\therefore \tan^{-1}\sqrt{3} - \cot^{-1}(-\sqrt{3}) = \frac{\pi}{3} - \frac{5\pi}{6} = -\frac{\pi}{2}$
Ans: (b)
7 The value of x if $\tan^{-1}\sqrt{3} + \cot^{-1}x = \frac{\pi}{2}$
(a) $\sqrt{3}$ (b) $-\sqrt{3}$ (c) $\frac{1}{\sqrt{3}}$ (d) $\frac{\pi}{6}$
Solution:
 $\cot^{-1}x = \frac{\pi}{2} - \tan^{-1}\sqrt{3} = \frac{\pi}{2} - \frac{\pi}{3} = \frac{\pi}{6}$
 $\therefore x = \cot\frac{\pi}{6} = \sqrt{3}$
Ans: (a)

8	The value of x if $\sec^{-1} 2 + \cos e c^{-1} x = \frac{\pi}{2}$
	(a) $\sqrt{3}$ (b) 2 (c) $\frac{\sqrt{3}}{2}$ (d) -2
	Solution:
	$\cos ec^{-1}x = \frac{\pi}{2} - \sec^{-1}\sqrt{3} = \frac{\pi}{2} - \frac{\pi}{3} = \frac{\pi}{6}$
	$\therefore x = \cos ec \frac{\pi}{6} = 2$
	Ans: (b)
9	If $sin^{-1}x = y$ then the principal value of y is:
	(a) $0 \le y \le \pi$ (b) $\frac{-\pi}{2} \le y \le \frac{\pi}{2}$ c) $\frac{-\pi}{2} < y < \frac{\pi}{2}$ (d) $0 < y < \pi$
	Ans: (b)
10	If $tan^{-1}x = y$ then the principal value of y is:
	(a) $0 \le y \le \pi$ (b) $\frac{-\pi}{2} \le y \le \frac{\pi}{2}$ c) $\frac{-\pi}{2} < y < \frac{\pi}{2}$ (d) $0 < y < \pi$
	Ans: (c)

EXERCISE

1	The value	of $cos\left(tan^{-1}\frac{3}{4}\right)$ is :			
1	(a) $\frac{3}{5}$	(b) $\frac{4}{5}$	(c) $\frac{3}{4}$	(d) $\frac{3}{7}$	

	Answer: (b) $\frac{4}{5}$
2	The principal value of : $tan^{-1} \left[tan \left(\frac{5\pi}{4} \right) \right]$
	(a) $\frac{5\pi}{4}$ (b) $\frac{\pi}{4}$ (iii) $\frac{-\pi}{4}$ (d) 1
	Answer: (b) $\frac{\pi}{4}$
3	The value of $cot \left(cos^{-1} \frac{7}{25} \right)$ is :
	(a) $\frac{7}{24}$ (b) $\frac{24}{25}$ (c) $\frac{7}{25}$ (d) $\frac{25}{7}$
	Answer: (a) $\frac{7}{24}$
4	The value of $\cos^{-1}\left(\cos\left(\frac{14\pi}{3}\right)\right)$ is :
	(a) $\frac{14\pi}{3}$ (b) $\frac{\pi}{3}$ (c) $\frac{2\pi}{3}$ (d) $\frac{4\pi}{3}$
	Answer: (c) $\frac{2\pi}{3}$
5	The value of $2\sin^{-1}\left(\frac{1}{2}\right) + \cot^{-1}(1)$
	(a) $\frac{7\pi}{12}$ (b) $\frac{3\pi}{4}$ (c) $\frac{2\pi}{3}$ (d) $\frac{\pi}{4}$
	Answer:(a) $\frac{7\pi}{12}$

ASSERTION-REASON BASED QUESTIONS

	In the following questions, a statement of assertion (A) is followed by a statement of		
	Reason (R). Choose the correct answer out of the following choices.		
	(a) Both A and R are true and R is the correct explanation of A.		
	(b) Both A and R are true but R is not the correct explanation of A.		
	(c) A is true but R is false.		
	(d) A is false but R is true.		
1	ASSERTION (A): Principal value of $\cos^{-1} \cos\left(\frac{7\pi}{6}\right)$ is $\frac{5\pi}{6}$		
	REASON (R): Range of principal branch of \cos^{-1} is $[0, \pi]$ and $\cos^{-1}(\cos x) = x$		
	if $x \in [0, \pi]$.		
	Ans: (a)		
2	ASSERTION (A): Principal value of $\sin^{-1} \sin\left(\frac{13\pi}{2}\right)$ is $\frac{\pi}{2}$		
	$\operatorname{DEASON}(\mathbf{D}): \operatorname{sin}^{-1}(\mathbf{x}) = \operatorname{sin}^{-1}(\mathbf{x})$		
	$ \begin{array}{ccc} \text{REASON}(\mathbf{K}), & \text{SIII}(-\mathbf{X}) = -\text{SIII}(\mathbf{X}) \\ \text{Ansyle} \end{array} $		
	Alls.(0)		
3	ASSERTION (A): Dringingly value of $\sin^{-1}(-1) = -\frac{\pi}{2}$		
Ũ	ASSERTION (A). Finicipal value of stat $(-1) = \frac{1}{2}$		
	REASON (R): $\sin^{-1}(-x) = -\sin^{-1}(x)$		
	Ans: (a)		

4	ASSERTION (A): Principal value of $sin^{-1}sin\left(\frac{3\pi}{5}\right) = \frac{3\pi}{5}$
	REASON (R): $\sin^{-1}\sin(x) = x, x \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
	Ans: (d)
5	ASSERTION (A): The principal value of $\cos^{-1}\left(\frac{-1}{\sqrt{2}}\right) = \cos^{-1}\left(\frac{1}{\sqrt{2}}\right)^{1}$
	REASON (R): cosine function is an even function, therefore $\cos(-x) = \cos x$. Ans: (d)
6	ASSERTION (A): The principal value of $\cos^{-1}\left(\frac{-1}{2}\right) = \pi - \cos^{-1}\left(\frac{1}{2}\right)$
	REASON (R): Range of $\cos^{-1}x$ is $[0, \pi]$ Ans: (b)
7	$-1 \left[\left(-\pi \right) \right] -\pi$
/	ASSERTION (A): The principal value of $\tan^{-1}\left[\sin\left(\frac{-1}{2}\right)\right] = \frac{1}{2}$
	REASON (R): $\tan^{-1}(-x) = \tan^{-1}(x)$
	Alis. (u)
8	ASSERTION (A): The principal value of $tan^{-1} tan\left(\frac{-\pi}{4}\right) = \frac{-\pi}{4}$
	REASON (R): Range of $\tan^{-1} x$ is $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$, $\tan^{-1} (\tan x) = x$ if $x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
	Ans: (a)
9	ASSERTION(A): One branch of $cos^{-1}x$ other than the principal value
	branch is $[\pi, 2\pi]$
	REASON (R): $cos\left(\frac{-\pi}{2}\right) = -1$
	Ans: (c)
10	
10	ASSERTION (A): One branch of stn 'x other than the principal value branch is $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$
	$\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$
	$ \text{KEASON (K): } \sin\left(\frac{1}{2}\right) = \sin\left(\frac{1}{2}\right) = 1 $
	Ans: (c)

EXERCISE

1	ASSERTION (A): $sin(cos^{-1}x) = cos(sin^{-1}x) = \sqrt{1-x^2}, x \le 1$
	REASON (R): Because $Sin^2 \theta + cos^2 \theta = 1$
2	ASSERTION (A): The principal value of $\cos^{-1}\left[\cos\left(\frac{-\pi}{4}\right)\right] = \frac{-\pi}{4}$ REASON (R): Range of $\cos^{-1} x$ is $[0,\pi] \cos^{-1} (\cos x) = x$ if $x \in [0,\pi]$ Answer: (d)
3	ASSERTION (A): The principal value of $sin[cot^{-1}(cos(tan^{-1} 1))] = \sqrt{\frac{2}{3}}$

REASON (R): Range of
$$\tan^{-1} x$$
 is $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ $\tan^{-1}(\tan x) = x$ if $x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
Answer: (b)
ASSERTION (A): The principal value of $\cos^{-1} \cos\left(\frac{-\pi}{4}\right) = \frac{\pi}{4}$
REASON (R): Cosine function is an even function, therefore $\cos(-x) = \cos x$.
and $\cos^{-1}(\cos x) = x$ if $x \in [0, \pi]$
Answer: (a)
S ASSERTION (A): The value of $\sin\left[2\sin^{-1}\left(\frac{3}{4}\right)\right] = \frac{3}{4}$
REASON (R): $\sin(\sin^{-1} x) = x, x \in [-1, 1]$

2 MARK QUESTIONS

1	Find the value of $sin^{-1}\left[sin\left(\frac{2\pi}{3}\right)\right] + cos^{-1}\left[cos\left(\frac{2\pi}{3}\right)\right]$.
	Solution: We have $sin^{-1}sin\left(\frac{2\pi}{3}\right) = sin^{-1}sin\left(\pi - \frac{\pi}{3}\right)$
	$=\sin^{-1}\sin\left(\frac{\pi}{3}\right)$
	$=\frac{\pi}{3}$
	Value of $\cos^{-1}\cos\left(\frac{2\pi}{3}\right) = \frac{2\pi}{3}$
	$\therefore \sin^{-1}\sin\left(\frac{2\pi}{3}\right) + \cos^{-1}\cos\left(\frac{2\pi}{3}\right) = \frac{\pi}{3} + \frac{2\pi}{3} = \pi$
2	Find the value of: $tan^{-1}\left[2\cos(\sin^{-1}\left(\frac{1}{2}\right))\right]$
	Solution:
	$\tan^{-1}\left[2\cos(\sin^{-1}\left(\frac{1}{2}\right))\right] = \tan^{-1}\left[2\cos(\frac{\pi}{6})\right] = \tan^{-1}\left[2\times\frac{\sqrt{3}}{2}\right] = \tan^{-1}\sqrt{3} = \frac{\pi}{3}$
3	Find the value of: $tan^{-1}\left[2\sin(2\cos^{-1}\left(\frac{\sqrt{3}}{2}\right))\right]$
	Solution:
	$\tan^{-1}\left[2\sin(2\cos^{-1}\left(\frac{\sqrt{3}}{2}\right))\right] = \tan^{-1}\left[2\sin(2\times\frac{\pi}{6})\right]$
	$= tan^{-1} \left[2 \times \frac{\sqrt{3}}{2} \right] = tan^{-1} \sqrt{3} = \frac{\pi}{3}$
4	If $\cot^{-1}\left(\frac{1}{5}\right) = x$, then find the value of $\sin x$
	,

	Solution: $cotx = \frac{1}{5}$
	$\therefore \sin x = \frac{5}{\sqrt{26}}$
5	Find the value of $sin^{-1}\left(\frac{-1}{2}\right) + 2cos^{-1}\left(\frac{-\sqrt{3}}{2}\right)$
	Solution: $sin^{-1}\left(\frac{-1}{2}\right) = -sin^{-1}\left(\frac{1}{2}\right) = -\frac{\pi}{6}$
	$\cos^{-1}\left(\frac{-\sqrt{3}}{2}\right) = \pi - \cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$
	$\therefore \sin^{-1}\left(\frac{-1}{2}\right) + 2\cos^{-1}\left(\frac{-\sqrt{3}}{2}\right) = \frac{-\pi}{6} + 2 \times \frac{5\pi}{6} = \frac{3\pi}{2}$
6	Show that for $ x < 1$, $sin(tan^{-1}x) = \frac{x}{\sqrt{1+x^2}}$
	Solution:
	Let $tan^{-1}x = y$
	\therefore tany = x
	$\therefore L H S = sin y = \frac{x}{\sqrt{1+x^2}} = R H S$
7	Prove that: $tan\left(\frac{1}{2}sin^{-1}\frac{3}{4}\right) = \frac{4-\sqrt{7}}{3}$
	Solution : Let $sin^{-1}\frac{3}{4} = x$
	$\therefore \sin x = \frac{3}{4}$
	$\therefore \cos x = \frac{\sqrt{7}}{4}$
	L H S = $tan\frac{x}{2} = \sqrt{\frac{1-\cos x}{1+\cos x}} = \sqrt{\frac{1-\frac{\sqrt{7}}{4}}{1+\frac{\sqrt{7}}{4}}} = \frac{4-\sqrt{7}}{3} = RHS$
8	Find the value of $tan\left(2tan^{-1}\frac{1}{5}-\frac{\pi}{4}\right)$
	Solution: Let $tan^{-1}\frac{1}{5} = x$
	$\therefore \tan x = \frac{1}{5}$
	$\therefore \tan\left(2\tan^{-1}\frac{1}{5}-\frac{\pi}{4}\right) = \tan\left(2x-\frac{\pi}{4}\right) = \frac{\tan 2x - \tan\frac{\pi}{4}}{1 + \tan 2x \tan\frac{\pi}{4}} = \frac{-7}{17}$
	where, $\tan 2x = \frac{2\tan x}{1-\tan^2 x} = \frac{2 \times \frac{1}{5}}{1-\left(\frac{1}{5}\right)^2} = \frac{5}{12}$

9	Find the value of $sin^{-1}\left(\frac{-1}{2}\right) + 2cos^{-1}\left(\frac{-1}{2}\right) + tan^{-1}(1)$
	Solution: $sin^{-1}\left(\frac{-1}{2}\right) = -sin^{-1}\left(\frac{1}{2}\right) = -\frac{\pi}{6}$
	$\cos^{-1}\left(\frac{-1}{2}\right) = \pi - \cos^{-1}\left(\frac{1}{2}\right) = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$
	$tan^{-1}(1) == \frac{\pi}{4}$
	$\therefore \sin^{-1}\left(\frac{-1}{2}\right) + 2\cos^{-1}\left(\frac{-1}{2}\right) + \tan^{-1}(1) = \frac{-\pi}{6} + \frac{2\pi}{3} + \frac{\pi}{4} = \frac{3\pi}{4}$
10	Find the value of $sin\left(2sin^{-1}\frac{3}{5}\right)$
	Solution: Let $sin^{-1}\left(\frac{3}{5}\right) = \theta$
	$\therefore \sin \theta = \frac{3}{5}$
	$\therefore \sin\left(2\sin^{-1}\frac{3}{5}\right) = \sin 2\theta = 2\sin\theta\cos\theta$
	$= 2 \times \frac{3}{5} \times \frac{4}{5} = \frac{24}{25}$

2 MARKS

1	Find the value of sin $\left[2 \cot^{-1} \left(-\frac{5}{12}\right)\right]$
	Answer: $-\frac{120}{169}$
2	Find the value of $tan\left[\frac{\pi}{6} - tan^{-1}\left(\frac{1}{\sqrt{3}}\right)\right]$
	Answer: 0
3	Find the value of $sin (cot^{-1}x)$ in terms of x
	Answer: $\frac{1}{\sqrt{1+x^2}}$
4	Find the value of $sin\left[cot^{-1}\left(\frac{4}{3}\right)\right]$
	Answer: $\frac{3}{5}$
5	Find the principal of $tan^{-1} tan\left(\frac{7\pi}{6}\right) + cot^{-1} cot\left(\frac{7\pi}{6}\right)$
	Answer: $\frac{\pi}{3}$